skip to main content


Search for: All records

Creators/Authors contains: "Boukouvala, Fani"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2025
  2. Free, publicly-accessible full text available October 1, 2024
  3. In many areas of constrained optimization, representing all possible constraints that give rise to an accurate feasible region can be difficult and computationally prohibitive for online use. Satisfying feasibility constraints becomes more challenging in high-dimensional, non-convex regimes which are common in engineering applications. A prominent example that is explored in the manuscript is the security-constrained optimal power flow (SCOPF) problem, which minimizes power generation costs, while enforcing system feasibility under contingency failures in the transmission network. In its full form, this problem has been modeled as a nonlinear two-stage stochastic programming problem. In this work, we propose a hybrid structure that incorporates and takes advantage of both a high-fidelity physical model and fast machine learning surrogates. Neural network (NN) models have been shown to classify highly non-linear functions and can be trained offline but require large training sets. In this work, we present how model-guided sampling can efficiently create datasets that are highly informative to a NN classifier for non-convex functions. We show how the resultant NN surrogates can be integrated into a non-linear program as smooth, continuous functions to simultaneously optimize the objective function and enforce feasibility using existing non-linear solvers. Overall, this allows us to optimize instances of the SCOPF problem with an order of magnitude CPU improvement over existing methods.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  4. Modeling physiochemical relationships using dynamic data is a common task in fields throughout science and engineering. A common step in developing generalizable, mechanistic models is to fit unmeasured parameters to measured data. However, fitting differential equation-based models can be computation-intensive and uncertain due to the presence of nonlinearity, noise, and sparsity in the data, which in turn causes convergence to local minima and divergence issues. This work proposes a merger of machine learning (ML) and mechanistic approaches by employing ML models as a means to fit nonlinear mechanistic ordinary differential equations (ODEs). Using a two-stage indirect approach, neural ODEs are used to estimate state derivatives, which are then used to estimate the parameters of a more interpretable mechanistic ODE model. In addition to its computational efficiency, the proposed method demonstrates the ability of neural ODEs to better estimate derivative information than interpolating methods based on algebraic data-driven models. Most notably, the proposed method is shown to yield accurate predictions even when little information is known about the parameters of the ODEs. The proposed parameter estimation approach is believed to be most advantageous when the ODE to be fit is strongly nonlinear with respect to its unknown parameters. 
    more » « less